PRÁCTICA Nº2

SUBGRUPOS

Sea (G, *) un grupo, diremos que un subconjunto no vacío H de G es un subgrupo de G si verifica:

- a) Sea $e \in G$ el elemento neutro de G entonces $e \in H$.
- b) Para cada $h \in H$, su simétrico $h' \in H$.
- c) Es cerrado para la operación *, esto es, para cada $h_1, h_2 \in H$, $h_1 * h_2 \in H$.

Obsérvese que en tal caso (H, *) también tiene estructura de grupo.

Cuando tenemos un grupo finito podemos comprobar estas propiedades fácilmente como muestra el ejemplo 1, en el caso infinito y al igual que ocurre con los grupos infinitos todo dependerá del tipo de datos y operación dada, en muchos casos también podremos hacer comprobaciones directas.

Ejemplo 1. Sea $G = \{a, b, c, d\}$ y * la ley de composición interna dada por:

*	а	b	С	d	
a	а	b	c	d	
b	b	a	d	c	
c	c	d	b	a	
d	d	c	a	b	
Tabla 1.					

Comprobar si los subconjuntos $H_1 = \{a, b\}$ y $H_2 = \{b, c\}$ de G son subgrupos.

$$\label{eq:ln} $$In[]:=$ G=\{a,b,c,d\};$ operacion=\{\{a,b,c,d\},\{b,a,d,c\},\{c,d,b,a\},\{d,c,a,b\}\};$ op[x_,y_]:=operacion[[Position[G,x][[1]],Position[G,y][[1]]]][[1]][[1]];$$

Comprobamos las tres propiedades por separado:

a) Calculamos el elemento neutro y comprobamos si pertenece a H_1 y H_2 .

Como $a \notin H_2$, ya podemos asegurar que H_2 no es subgrupo.

b) Continuamos estudiando sólo a H_1 , que si contiene al neutro a, ahora calculamos los simétricos de los elementos de H_1 utilizando la función simetrico[]:

```
\label{eq:ln} \textit{In[]:=} \quad \begin{aligned} & simetrico[x\_] := Module[\{simetrico, CONTADORi\}, \\ & \vdots & \vdots \end{aligned}
```

La aplicamos a los elementos que nos interesan,

In[]:= simetrico[a]
Out[]= a
In[]:= simetrico[b]
Out[]= b

Luego la propiedad segunda también es verificada por H_1 .

c) Por último comprobamos que es cerrado para la operación:

```
In[]:= op[a,a]

Out[]= a

In[]:= op[a,b]

Out[]= b

In[]:= op[b,a]

Out[]= b

In[]:= op[b,b]

Out[]= a
```

En consecuencia H_1 si es subgrupo.

Utilizando la siguiente caracterización también podemos implementar directamente un test:

Proposición 1. Equivalentemente, diremos que H es subgrupo de G, si para cada par de elementos $x, y \in H$, entonces $x * y' \in H$, donde y' es el simétrico de y.

Implementamos la caracterización para grupos finitos con el siguiente programa:

FUNCIÓN	COMENTARIOS	
G=GRUPO; operacion=TABLA DE OPERACIONES DE G;	Introducimos el grupo "G".	
op[x_,y_]:=	Introducimos la función 1 de la práctica 1.	
ElementoNeutro=	Calculamos el elemento neutro con el programa 3 de la práctica 1.	
simetrico[x_]:=	Definimos la función 5 de la práctica 1.	
SUBGRUPO[H_]:=Module[{subgrupo,CONTADORi,CONTADORj}, subgrupo=True; CONTADORi=1;	La función tendrá como argumento a un subconjunto "H" de "G".	
While[subgrupo && CONTADORi<=Length[H], CONTADORj=1; While[subgrupo && CONTADORj<=Length[H], If[Intersection[{op[H[[CONTADORi]], simetrico[H[[CONTADORj]]]]]},H]=={}, subgrupo=False;]; CONTADORj++;]; CONTADORi++;];	Comprobamos si en algún caso no se verifica la condición equivalente.	

Función 1. Subgrupos.

Ejemplo 2. Consideramos el mismo conjunto y operación interna del ejemplo 1. Comprobar si los subconjuntos $H_1 = \{a, b\}$ y $H_2 = \{b, c\}$ de G son subgrupos usando la función 1.

Como siempre definimos las funciones e introducimos los programas previos necesarios:

```
In[]:=
               G=\{a,b,c,d\};
               operacion={{a,b,c,d},{b,a,d,c},{c,d,b,a},{d,c,a,b}};
               op[x_,y_]:=operacion[[Position[G,x][[1]],Position[G,y][[1]]]][[1]];
In[]:=
               ElementoNeutro="No existe";
In[]:=
               simetrico[x_]:=Module[{simetrico,CONTADORi},
Definimos la función 1.
In[]:=
               SUBGRUPO[H\_] := Module[\{subgrupo, CONTADORi, CONTADORj\},
                       :
                                       :
Comprobamos si H_1 y H_2 son subgrupos:
               SUBGRUPO[{a,b}]
In[]:=
Out[]=
               True
In[]:=
               SUBGRUPO[{b,c}]
```

Out[]=

False