PRÁCTICA Nº 4

EL GRUPO SIMÉTRICO

Disponemos de una función en Mathematica que directamente calcula las permutaciones:

Permutations[lista]

devuelve todas las permutaciones posibles que podamos realizar con los elementos del argumento "lista".

Para un entero n > 1, consideramos el conjunto $X = \{1, 2,...,n\}$, entonces el grupo simétrico o de las permutaciones de n elementos, será el conjunto de todas las aplicaciones biyectivas de X en X (esto es, el conjunto de todas las permutaciones) con la operación composición:

$$S_n = \{f: X \to X \mid f \text{ es aplicación biyectiva}\}.$$

Los elementos de S_n o permutaciones, habitualmente las escribiremos así:

$$\sigma \in S_n, \ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}.$$

Existen varias posibilidades para manejar las permutaciones con el ordenador:

1. IMPLEMENTACIÓN DE PERMUTACIONES

Podemos calcular todas las permutaciones y representarlas de la forma habitual aprovechando la función Permutations[], para ello construimos la función:

FUNCIÓN	COMENTARIOS
S[n_]:=Table[MatrixForm[Calculamos el grupo simétrico S_n para
{Table[j,{j,n}],Permutations[Table[j,{j,n}]][[i]]}]	algún "n".
,{i,n!}]	

Función 1. El grupo simétrico S_n.

Función que calculará todas las permutaciones de S_n . Para referirnos a dichas permutaciones asignaremos un índice a cada una de ellas con la función:

FUNCIÓN	COMENTARIOS
$NombreS[n_] := Do[Print[\sigma_k, "=", S[n][[k]]], \{k, 1, n!\}]$	Asignamos un índice a cada permutación.

Función 2. Índices de las permutaciones.

Ejemplo 1. Calculamos todas los elementos de S_3 .

Definimos las funciones 1 y 2.

Podemos identificar una permutación concreta por el índice k que le asignamos,

S[n][[k]]

También podemos averiguar el índice asociado a una permutación cualquiera de S_n , damos dos definiciones alternativas de la misma función:

FUNCIÓN	COMENTARIOS
Indice[permutacion_]:=Module[{i,n,j},	El argumento será una lista.
n=Length[permutacion];i=1; While[Permutations[Table[j,{j,1,n}]][[i]]!=permutacion,i++];	Se identifica la permutación.
i l;	Muestra por pantalla los resultados.

Función 3. Índice de una permutación.

Ejemplo 2. Identificar la permutación $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$.

Definimos la función 3:

Y al revés, comprobamos:

$$In[]:=$$
 $S[n_]:=Table[MatrixForm[{Table[j,{j,n}]},$

П

Permutations[Table[j,{j,n}]][[i]]}],{i,n!}];

$$Out[] = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$$

Y así, podremos referirnos o aplicar cómodamente cualquier permutación. De esta forma, para calcular $\sigma_k(m)$ con $\sigma_k \in S_n$ y $m \in \{1, 2, ..., n\}$, usaremos la función:

FUNCIÓN	COMENTARIOS
sigma[k_,n_][m_]:=Permutations[Table[j,{j,n}]][[k,m]]	Definimos la permutación σ_k de S_n .

Función 4. Permutación σ_k .

Para calcular $\sigma_k(m)$ con $\sigma_k \in S_n$, escribiremos: sigma[k,n][m].

1.1. FUNCIONES DE MATHEMATICA

El paquete de Matemática Discreta que incorpora Mathematica y al cual accedemos escribiendo:

incorpora las funciones:

• **SymmetricGroup[n],** que funciona de forma similar a S[n] si bien no usa la misma notación, en realidad sería equivalente a escribir:

Permutations[Table[i,{i,1,n}]

• Index[], hace lo mismo la función Indice[].

2. COMPOSICIÓN O MULTIPLICACIÓN DE PERMUTACIONES

También podemos componer o multiplicar las permutaciones, si σ_k , $\sigma_j \in S_n$ entonces la permutación $\sigma_k \sigma_j(m)$ vendrá dada por:

sigma[k,n][sigma[j,n][m]]

Habitualmente también nos interesará identificar a la permutación que resulta de componer otras dos, podemos programar una pequeña rutina que se encargue de esto:

FUNCIÓN	COMENTARIOS
sigma[k_,n_][m_]:=	Definimos la función 4.
composicion[k_, j_,n_] := Module[{t,m,z,tabla}, t = 1; tabla=Table[sigma[k,n][sigma[j,n][m]],{m,1,n}];	Llamaremos "composicion" a la función y tendrá por argumentos a los índices de las permutaciones que vamos a multiplicar y el orden del grupo simétrico donde trabajamos
While[tabla!=Permutations[Table[m,{m,n}]][[t]],t++];	Bucle que recorre todas las permutaciones de $S_n e$ identifica la composición.
A=MatrixForm[{Table[z,{z,n}],tabla}];	Se construye la matriz que representa a la permutación.
$Print[\sigma_{k,}\sigma_{j},"=",\sigma_{t},"=",A]$	Muestra por pantalla los resultados.
]	

Función 5. Producto de permutaciones.

Alternativamente también podríamos programarla usando la función Position[], como podemos comprobar en la siguiente función que determina únicamente el índice del resultado de componer ambas permutaciones:

FUNCIÓN	COMENTARIOS
sigma[k_,n_][m_]:=	Definimos la función 4.
composicion2[k_,j_,n_]:=Module[{t,m,z},	Llamaremos "composicion2" a la función y tendrá por argumentos a los índices de las permutaciones que vamos a multiplicar y el orden del grupo simétrico donde trabajamos
Position[Permutations[Table[m,{m,n}]], Table[sigma[k,n][sigma[j,n][m]],{m,1,n}]][[1]][[1]]	Como salida tendrán el índice de la permutación.
]	

Función 6. Producto de permutaciones 2.

Ejemplo 3. Calculamos la multiplicación de σ_2 y σ_4 de S_3 :

Definimos 4 y 5:

```
In[]:= \begin{array}{c} \textbf{sigma[k\_,n\_][m\_]:=Permutations[Table[j,\{j,n\}]][[k,m]];}\\ \textbf{composicion[k\_,j\_,n\_]:=Module[\{t,m,z\},}\\ \textbf{t=1;} \\ &\thickapprox \\ \hline \\ \textit{In[]:=} \\ \textbf{composicion[2,4,3]} \\ Out[]= \\ \sigma_2\sigma_4 = \sigma_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}
```

Y con la función 6:

Además, también resulta de gran interés, tanto desde un punto de vista práctico como computacional, para manejar los grupos simétricos como en el capítulo anterior, esto es, determinar la tabla de todos los productos posibles entre las permutaciones (tabla de operaciones), para ello programamos la siguiente función:

FUNCIÓN	COMENTARIOS
composicion2[k_,j_,n_]:=	Definimos la función 5.
$cuentas[n_{_}] := Module[\{t,k,j,m\},$	Función "cuentas" con un único
$tablacomp = Table[0, \{k,n!\}, \{j, n!\}];$	argumento "n".
Do[
Do[
t = composicion2[k,j,n];	Bucles que recorren y calculan todos los
$tablacomp[[j, k]] = \sigma_t$	posibles productos,
, {k, 1, n!}];	
, {j, 1, n!}];	
TableForm[tablacomp, TableHeadings -> {Table[σ_m , {m, n!}],	Salida de resultados.
Table[σ_m , {m, n!}]}, TableSpacing -> {2,2}]	Sanda de resultados.
]	

Función 7. Tabla de productos entre permutaciones.

Ejemplo 4. Calculamos la tabla de todos los posibles productos de todas las permutaciones de S_3 .

En primer lugar definimos la función 5:

```
\label{eq:ln} $In[]:=$ composicion2[k\_,j\_,n\_]:=Module[\{t,m,z\},$ Position[Permutations[Table[m,\{m,n\}]],$ Table[sigma[k,n][sigma[j,n][m]],\{m,1,n\}]][[1]][[1]] $$ ]
```

Introducimos la función 6:

$$In[]:=$$
 cuentas[n_] := Module[{t,k,j,m},

× ,

Y calculamos la tabla:

In[]:= cuentas[3]

Out[]=

3. EL SUBGRUPO ALTERNADO

En esta sección se analizará el problema de la paridad de una permutación y se determinará explícitamente el subgrupo alternado de cualquier grupo simétrico.

3.1. SIGNATURA Y PARIDAD

Dada una permutación $\sigma \in S_n$, $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$ tenemos una <u>inversión</u> en σ si existen i, j

 $\in X = \{1, 2, ..., n\}$ tales que i < j y $\sigma(i) > \sigma(j)$. Denotaremos por $\gamma(\sigma)$ al número de inversiones que hay en σ , llamaremos signatura de σ a $(-1)^{\gamma(\sigma)}$ y escribiremos:

$$Sig(\sigma) = (-1)^{\gamma(\sigma)}$$
.

Una permutación σ , se dirá que es <u>par</u> si el número de inversiones que hay en σ es par, esto es si $Sig(\sigma)$ = 1. Y se dirá que es <u>impar</u> si $\gamma(\sigma)$ es impar $(Sig(\sigma) = -1)$.

Para resolver este problema podríamos en primer lugar calcular el número de inversiones de una permutación. Desde un punto de vista práctico esta tarea puede resultar bastante engorrosa, sin embargo, desde el punto de vista computacional resulta bastante inmediato.

PROGRAMA	COMENTARIOS
n=N° DE ELEMENTOS DE LA PERMUTACIÓN;	Se introduce el índice "k" de la
k=INDICE DE LA PERMUTACIÓN;	permutación y número de elementos "n"
permutacion=Table[sigma[k,n][i],{i,1,n}];	Opcionalmente podemos directamente

	introducir la permutación que queramos y no necesariamente referirnos a ella por "n" y "k".
inversion=0;	De partida suponemos que no hay ninguna inversión.
Do[Do[If[i <j &&="" ,{j,i,length[permutacion]}];,{i,1,length[permutacion]}];<="" permutacion[[i]],inversion++];="" permutacion[[j]]<="" th=""><th>Se calcula el nº de inversiones.</th></j>	Se calcula el nº de inversiones.
inversion	Salida de resultados.

Programa 8. Inversiones.

Dentro del paquete de Matemática Discreta encontramos

Inversions[permutación]

que también calcula el número de inversiones de una permutación.

Ejemplo 5. Calcular el número de inversiones de la permutación $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 8 & 5 & 2 & 3 & 4 & 7 & 1 \end{pmatrix}$.

Usando el programa 7 podemos calcularlas:

≈ ≈

Out[]= 19

O bien,

In[]:= <<DiscreteMath`Combinatorica`</pre>

In[]:= Inversions[{6,8,5,2,3,4,7,1}]

Out[]= 19

Y conociendo el número de inversiones es inmediato calcular la signatura de una permutación.

Ejemplo 6. Calcular la signatura de la permutación $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 8 & 5 & 2 & 3 & 4 & 7 & 1 \end{pmatrix}$.

$$In[]:=$$
 permutacion={6,8,5,2,3,4,7,1}; \approx \approx $Out[]=$ 19 $In[]:=$ (-1)^%

3.2. EL SUBGRUPO ALTERNADO

-1

Out[]=

Llamamos <u>subgrupo alternado</u> A_n , al subconjunto de S_n formado por todas las permutaciones pares. A_n es un subgrupo de S_n , es fácil comprobar usando que $Sig(\sigma\tau) = Sig(\sigma)Sig(\tau)$ que si σ y τ son dos permutaciones entonces $\sigma\tau$, σ^{-1} y τ^{-1} también permutaciones pares. De hecho A_n es un subgrupo normal de S_n .

Calculamos todas las permutaciones pares de S_n , esto es, el subgrupo alternado A_n :

PROGRAMA	COMENTARIOS
sigma[k_,n_][m_]:=	Definimos la función 4.
S[n_]:=	Definimos la función 1.
n=NUMERO DE ELEMENTOS DE LAS PERMUTACIONES;	Introducimos "n" para calcular A_n .
Sn=S[n]; Alternado={};	Bucles que recorren y calculan todas las signaturas de todas las permutaciones, comprobando cuales son pares.
Do[permutacion=Table[sigma[k,n][i],{i,1,n}]; inversion=0; Do[Do[If[i <j &&="" permutacion[[i]],inversion++];<="" permutacion[[j]]<="" th=""><th>Se calcula el numero de inversiones de cada permutación y se comprueba si es par.</th></j>	Se calcula el numero de inversiones de cada permutación y se comprueba si es par.
,{j,i,n}]; ,{i,1,n}]; inversion; If[Mod[inversion,2]==0,AppendTo[Alternado,Sn[[k]]]]; ,{k,1,n!}]	
Alternado	Salida de resultados.

Programa 9. Cálculo del subgrupo alternado directamente contando el número de inversiones.

Por último podemos usar el paquete de Matemática Discreta y directamente calcularlo:

AlternatingGroup[n]

Ejemplo 7. Calcular A_4 .

Definiremos las funciones que necesitamos previamente:

$$\label{eq:ln} $In[]:=$ sigma[k_,n_][m_]:=Permutations[Table[j,\{j,n\}]][[k,m]];$ $In[]:=$ S[n_]:=Table[MatrixForm[\{Table[j,\{j,n\}], Permutations[Table[j,\{j,n\}]][[i]]\}],\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]\},\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]\},\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]\},\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]\},\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]],\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]],\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]],\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]],\{i,n!\}];$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],[i]],$ $Permutations[Table[j,\{j,n\}]][[i]]],$ $Permutations[Table[j,\{j,n\}]][[i]]],$$

O bien usando el programa 8,

$$In[]:=$$
 n=4;

 $Out[] = \begin{cases} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \end{cases}$

Por último con el paquete de funciones: